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Abstract

A theoretical method is developed to investigate the coupled vibration characteristics of the ring-stiffened
cylindrical shells partially filled with an inviscid, incompressible and irrotational fluid having a free surface.
As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are
studied. The Rayleigh–Ritz method is used to derive the frequency equation of the ring-stiffened and
partially fluid-filled shells based on Love’s thin shell theory. The solution for the velocity potential of fluid
movement is assumed as a sum of two sets of linear combinations of suitable harmonic functions that
satisfy Laplace equation and the relevant boundary conditions. The effect of fluid level, stiffener’s number
and position on the coupled vibration characteristics is investigated. To demonstrate the validity of present
theoretical method, the published results are compared for simply supported shell and the finite element
analysis is performed for unstiffened/stiffened, partially fluid-filled shells with clamped–free boundary
condition.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled cylindrical shells can be seen in various kinds of industrial applications such as
rocket propellant tanks in space boosters and space vehicles, liquid storage tanks for the
accommodation of various kinds of liquids, or nuclear reactor vessels, and many more. When the
unstiffened cylindrical shells are subjected to severe fluid pressure, it can buckle at a pressure.
Also, these structures can be subjected to the external dynamic loads. These external dynamic
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loads can cause the undesirable resonance and lead to fatigue. One method of imposing the
structural efficiency of these shells is to stiffen them with ring stiffeners, spaced at suitable
distances apart. Moreover one must use the dynamic characteristics on design of structure
subjected to external dynamic loads because only vibration (not fatigue) could severely damage
the sensitive equipments in airplanes and submarines, etc. Vibration characteristics of partially
fluid-filled and stiffened cylindrical shells have been of primary importance for the design of the
above-mentioned structures. Hence, numerous researches on this subject of partially fluid-filled
and unstiffened shells have been conducted by different approaches such as eigenfunction
expansion method [1], Galerkin’s method [2], Rayleigh’s quotient method [3], Rayleigh–Ritz
method [4], the finite element method [5–7], the collocation method [8], the Fourier series
expansion method [9] and experiment [10]. For the ring-stiffened cylindrical shell without fluid
many researchers [11–14] conducted the free vibration analysis. The literature on the vibrations of
partially fluid-filled and ring-stiffened cylindrical shell is less extensive. Gupta [15] considered the
cylindrical shell with a ring on a free edge at top of shell. In his study, the influence of the top ring
beam was estimated by changing the boundary conditions at the top of the tank from a free end to
a simply supported end. Amabili et al. [4] presented the numerical results for the tank with only
one stiffener.
In this paper, a theoretical method is presented for the free vibration analysis of the partially

fluid-filled and ring-stiffened cylindrical shells with simply supported or clamped–free boundary
condition. For the vibration of the shell itself Rayleigh–Ritz method used, it is based on Love’s
thin shell theory. It is assumed that the contained fluid is incompressible and inviscid. For the
vibration relevant to the fluid, the solution for the velocity potential is assumed as a sum of two
sets of velocity potential: one is that of the fluid associated with the flexible shell, the other is due
to the sloshing of the fluid in the rigid tank. The Rayleigh–Ritz method is used to derive the
frequency equation of partially fluid-filled and ring stiffened shell. To demonstrate the validity of
present theoretical method, the published results are compared for simply supported shell and the
finite element analysis is performed for unstiffened/stiffened, partially liquid-filled shells with
clamped–free boundary condition.

2. Energy of shell and ring stiffeners

Consider the thin-walled cylindrical shell of length L; radius R and thickness h as shown in Fig.
1. The shell is stiffened evenly or unevenly by ring stiffeners with a rectangular cross-section of
height dr and width (or thickness) br: The kth ring stiffener is located at a distance xk measured
from one end of the shell. The stiffening technique considered in this paper is external eccentricity
that stiffeners are placed outwardly to the shell middle surface. The shell and stiffeners are
assumed to be made of an elastic material with Young’s modulus E; the Poisson ratio n and mass
density r: The bottom of the shell is assumed to be flat and rigid. The radial, circumferential and
axial co-ordinates are denoted by r (or z), y and x; respectively. The tank is filled to a height H

with a non-viscous, incompressible and irrotational fluid of mass density rL:
The considered ring stiffeners are spaced evenly or unevenly on the shell. The axial positions of

stiffeners are shown in Fig. 2. The stiffeners are arranged functionally in axial direction. The
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symbol xk denoting the stiffener’s position is given in terms of space ratio S:

xk ¼
L

2

XNr

k¼1

Sk�1
XNr

i¼1

ð1þ SiÞ;

,
ð2:1Þ

where Nr is the stiffener numbers. As shown in this figure, the stiffeners are located near at x ¼ 0
edge in the case of S > 1; x ¼ L edge of the shell in the case of So1; and evenly spaced over the
shell in the case of S ¼ 1:
The strain energy only for the thin isotropic cylindrical shell without the stiffeners is given by

Us ¼
1

2

Z L

0

Z 2p

0

As e2x þ 2nexey þ e2y þ
1� n
2

e2xy

� ��

þ Ds k2x þ 2nkxky þ k2y þ
1� n
2

k2xy

� ��
dx R dy; ð2:2Þ
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Fig. 1. Configuration of ring stiffened cylindrical shell partially filled with liquid.
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As ¼
Eh

1� n2
; Ds ¼

Eh3

12ð1� n2Þ
; ð2:3Þ

where coefficients As; Ds are stretching and bending stiffness of the shell. From Love’s thin shell
theory, the strain and curvature ei; ki ði ¼ x; y;xyÞ in the middle surface are as follows:

ex ¼
@u

@x
; ey ¼

1

R

@v

@y
þ w

� �
; exy ¼

@u

R@y
þ

@v

@x
; ð2:4Þ

kx ¼ �
@2w

@x2
; kf ¼ �

1

R2

@2w

@y2
�

@v

@y

� �
; kxf ¼ �

1

R
2

@2w

@x @y
�

@v

@x

� �
; ð2:5Þ

where u; v; and w are axial, circumferential and radial displacements of the shell on the shell
middle surface, respectively.
By shell deformation, the rigid motion of the ring stiffener at distance z from the shell middle

surface can be expressed as

ur ¼ u � z
@w

@x
; vr ¼ v þ

z

R
v �

@w

@y

� �
; wr ¼ w; ð2:6Þ

where ur; vr; and wr are axial, circumferential and radial rigid displacements for the ring stiffener,
respectively. The deformation of x direction for the ring stiffener ur is negligible as the ring
stiffener is analogous to a beam.
The strain energy for a ring stiffener from the discrete stiffener theory [14] is

Uk ¼
1

2

Z 2p

0

Z
z

dðx � xkÞ Are2yr þ Dr k2yyr þ
1� n
2

k2xyr

� �� �
ðR þ zÞ dy dz; ð2:7Þ

eyr ¼
1

R þ z

@vr

@y
þ wr

� �
; kyr ¼ �

1

ðR þ zÞ2
@2wr

@y2
�

@vr

@y

� �
; kxyr ¼

1

R þ z
2
@2wr

@x @y
�
@vr

@x

� �
; ð2:8Þ

Ar ¼
Ebr

1� n2
; Dr ¼

Eb3r
12ð1� n2Þ

; ð2:9Þ

where subscript r means the ring stiffener and eyr; kyr and kxyr are circumferential strain, bending
and twisting curvature of the ring stiffener in the middle surface of shell, respectively.
The kinetic energies of the shell and stiffener are given by

Ts ¼
1

2
rho2

Z 2p

0

Z L

0

½uðx; yÞ2 þ vðx; yÞ2 þ wðx; yÞ2� dx R dy; ð2:10Þ

Tk ¼
1

2
rbro2

Z 2p

0

Z
z

dðx � xkÞ ½v2r ðx; yÞ þ w2
r ðx; yÞ�ðR þ zÞ dy dz; ð2:11Þ

where o is the natural angular frequency of vibration for the considered models.
In this paper, two types of boundary condition are considered: (1) SS boundary condition is

both edges simply supported, (2) CF boundary condition is clamped at x ¼ 0 and free at x ¼ L:
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The admissible displacement functions [13] for freely vibrating cylindrical shell with any
boundary conditions can be written by

uðx; yÞ ¼
XM

m¼1

Umn

@cmðxÞ
am@x

cos ny; vðx; yÞ ¼
XM

m¼1

VmncmðxÞ sin ny;

wðx; yÞ ¼
XM

m¼1

WmncmðxÞ cos ny; ð2:12Þ

where Umn; Vmn; Wmn are the amplitudes for each direction, m and n are axial and circumferential
wave number. cmðxÞ used as the axial mode is the beam function satisfying the described
boundary condition.

3. Energy of fluid

A large number of papers on the vibrations of partially fluid-filled shells have been published,
e.g., Refs. [1–10]. This formulated part is an elaboration of the theory and the approach developed
by Amabili et al. in Ref. [4].
The irrotational motion of an incompressible and non-viscous fluid can be described by a

velocity potential %fðr; y;x; tÞ: This potential function must satisfy the Laplace equation

@2 %f
@r2

þ
1

r

@ %f
@r

þ
1

r2
@2 %f

@y2
þ

@2 %f
@x2

¼ 0: ð3:1Þ

The velocity potential is assumed to be harmonic by following form

%fðr; y; x; tÞ ¼ �iofðr; y; xÞeiot; ð3:2Þ

where i is the imaginary unit and fðr; y; xÞ is the deformation potential.
The deformation potential using the principle of superposition can be divided into

f ¼ fð1Þ þ fðSÞ; ð3:3Þ

where fð1Þ describes the deformation potential of the fluid associated with the flexible shell
considering the bottom as rigid, fðSÞ describes the deformation potential due to the sloshing of the
fluid in rigid tank.
Since the velocity vector of the fluid is the gradient of velocity potential, the boundary

conditions imposed to the fluid are:
(a) at the rigid bottom of shell x ¼ 0; the fluid velocity in the vertical direction is zero, so

@fð1Þ

@x
¼ 0 at x ¼ 0; ð3:4Þ

(b) the flow adjacent to the wall of the elastic shell r ¼ R must move radially with the same
velocity as the shell, so

@fð1Þ

@r
¼ wðx; yÞ at r ¼ R; ð3:5Þ
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(c) at the free surface of fluid x ¼ H; the dynamic pressure is zero, so

fð1Þ ¼ 0 at x ¼ H: ð3:6Þ

The boundary conditions imposed to the deformation potential fðSÞ due to the sloshing of the
fluid in rigid tank are:
(a) the bottom of the shell x ¼ 0 is rigid the fluid velocity in the vertical direction is zero, so

@fðSÞ

@x
¼ 0 at x ¼ 0; ð3:7Þ

(b) the radial velocity is zero as the wall of the shell is rigid, so

@fðSÞ

@r
¼ 0 at r ¼ R; ð3:8Þ

(c) at the free surface x ¼ H; the sloshing condition is

o2f ¼ g
@f
@x

at x ¼ H; ð3:9Þ

where g is the gravitational acceleration. Using condition (3.6), the sloshing condition (3.9) can be
rewritten as

o2fðSÞ ¼ g
@

@x
ðfð1Þ þ fðSÞÞ at x ¼ H: ð3:10Þ

The kinetic energy of fluid inside the tank TL can be written by

TL ¼
1

2
rLo

2

Z Z
S

f
@f
@ %n

dS ¼
1

2
rLo

2

Z Z
SF

f
@f
@ %n

dSF þ T�
L ; ð3:11Þ

where, %n denotes the normal unit vector at any point on the boundary surface S; S ¼ S1 þ SF ; S1

is the shell lateral surface, SF is the free surface.
When the effect of the free surface wave is neglected, the first term of second equality is zero.

And the simplified kinetic energy T�
L of the fluid is

TL ¼T�
L ¼

1

2
rLo

2

Z Z
S1

f
@f
@ %n

dS

¼
1

2
rLo

2

Z Z
S1

f
@f
@r

dS

¼
1

2
rLo

2

Z Z
S1

ðfð1Þ þ fðSÞÞw dS

¼T
ð1Þ
L þ T

ð1�SÞ
L : ð3:12Þ

The deformation potential of the fluid fð1Þ associated with the flexible shell considering the
bottom as rigid is assumed as

fð1Þðx; r; yÞ ¼
XM

m¼1

X%M

%m¼1

Fð1Þ
m %m ¼

XM

m¼1

X%M

%m¼1

Am %mn cos
ð2 %m � 1Þpx

2H
In

ð2 %m � 1Þpr

2H

� �
cos ny: ð3:13Þ
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This function satisfies the boundary conditions (3.4) and (3.6) and Laplace equation (3.1). The
condition given in Eq. (3.5) gives the following relation:

X%M

%m¼1

Am %mn cos
ð2 %m � 1Þpx

2H
I 0n

ð2 %m � 1ÞpR

2H

� �
¼ WmncmðxÞ; ð3:14Þ

I 0n
ð2 %m � 1Þpr

2H

� �
¼

ð2 %m � 1Þp
4H

In�1
ð2 %m � 1Þpr

2H

� �
þ Inþ1

ð2 %m � 1Þpr

2H

� �� �
: ð3:15Þ

This equation must be satisfied for all values 0pxpH: By multiplying this equation by
cos½ð2 %m � 1Þpx=ð2HÞ� and integrating between 0 and H; the following relation is obtained,

Am %mn ¼
2Wmngm %m

I 0nðð2 %m � 1ÞpR=2HÞH
; gm %m ¼

Z H

0

cmðxÞ cos
ð2 %m � 1Þpx

2H
dx: ð3:16Þ

The component Fð1Þ
m %m in Eq. (3.13) can be rewritten by

Fð1Þ
m %m ¼

X%M

%m¼1

2Wmngm %m

I 0nðð2 %m � 1ÞpR=2HÞH
cos

ð2 %m � 1Þpx

2H
In

ð2 %m � 1Þpr

2H

� �
cos ny: ð3:17Þ

Therefore, the term T
ð1Þ
L in Eq. (3.12) can be written in the form

T
ð1Þ
L ¼

1

2
rLo

2

Z 2p

0

Z H

0

fð1Þw dx R dy
����
r¼R

¼
1

2
rLo

2RCn

XM

m¼1

XM

j¼1

WmnWjn

X%M

%m¼1

2gm %mgj %m

I 0nðð2 %m � 1ÞpR=2HÞH
In

ð2 %m � 1ÞpR

2H

� �
; ð3:18Þ

Cn ¼
Z 2p

0

cos2 ny dy: ð3:19Þ

The deformation potential fðSÞ due to the sloshing of the fluid in rigid tank for the asymmetric
modes ðn > 0Þ can be expressed by

fðSÞ ¼
XK

k¼1

Bkn cosh
eknx

R

	 

Jn

eknr

R

	 

cos ny: ð3:20Þ

This equation satisfies condition (3.7). Applying this expression to the boundary condition
(3.8), the following equation is derived,

dJnðeknr=RÞ
dr

¼ 0 at r ¼ R: ð3:21Þ

Hence ekn in Eq. (3.20) are solutions of Eq. (3.21).
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Substituting expression (3.13) and (3.20) into the sloshing condition (3.10), gives

o2
XK

k¼1

Bkn cosh
eknH

R

� �
Jn

eknr

R

	 


¼ �g
XM

m¼1

qm

X%M

%m¼1

ð2 %m � 1Þp
H2

Wmngm %m

I 0nðð2 %m � 1ÞpR=2HÞ
sin

ð2 %m � 1Þp
2

In
ð2 %m � 1Þpr

2H

� �

þ g
XK

k¼1

Bkn

ekn

R
sinh

eknH

R

� �
Jn

eknr

R

	 

: ð3:22Þ

Eq. (3.22) must be satisfied for all range of 0prpR: Multiplying this equation by Jnðeknr=RÞr
and integrating between 0 and R; one obtains the following sloshing equation:

o2
XK

k¼1

Bkn cosh
eknH

R

� �
xkn

¼ �g
XM

m¼1

qm

XK

k¼1

X%M

%m¼1

ð2 %m � 1Þp
H2

Wmngm %m

I 0nðð2 %m � 1ÞpR=2HÞ
sin

ð2 %m � 1Þp
2

zk %mn

þ g
XK

k¼1

Bkn

ekn

R
sinh

eknH

R

� �
xkn; ð3:23Þ

xkn ¼
Z R

0

J2
n

eknr

R

	 

r dr; ð3:24Þ

zk %mn ¼
Z R

0

Jn

eknr

R

	 

In

ð2 %m � 1Þpr

2H

� �
r dr: ð3:25Þ

For the axisymmetric modes ðn ¼ 0Þ; fðSÞ can be expressed in the form

fðSÞ ¼ B00 þ
XK

k¼1

Bk0 cosh
ek0x

R

	 

J0

ek0r

R

	 

: ð3:26Þ

The sloshing equation (3.22) is modified to the form

o2 B00 þ
XK

k¼1

Bk0 cosh
ek0H

R

� �
J0

ek0r

R

	 
" #

¼ �g
XM

m¼1

qm

X%M

%m¼1

ð2 %m � 1Þp
H2

Wm0gm %m

I 00ðð2 %m � 1ÞpR=2HÞ
sin

ð2 %m � 1Þp
2

I0
ð2 %m � 1Þp

2H

� �

þ g
XK

k¼1

Bk0
ek0

R
sinh

ek0H

R

� �
J0

ek0r

R

	 

: ð3:27Þ
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Multiplying this equation by r and integrating between 0 and R; one obtains

o2 B00
R2

2
þ

XK

k¼1

Bk0 cosh
ek0H

R

� �
ak0

" #

¼ �g
XM

m¼1

qm

X%M

%m¼1

ð2 %m � 1Þp
H2

Wm0gm %m

I 00ðð2 %m � 1ÞpR=2HÞ
sin

ð2 %m � 1Þp
2

b %m0

þ g
XK

k¼1

Bk0
ek0

R
sinh

ek0H

R

� �
ak0; ð3:28Þ

ak0 ¼
Z R

0

J0
ek0r

R

	 

r dr ¼

R3

e2k0
J 0
1ðek0Þ ¼ 0; ð3:29Þ

b %m0 ¼
Z R

0

I0
ð2 %m � 1Þpr

2H

� �
r dr: ð3:30Þ

Eq. (3.28) can be rewritten by

o2B00
R2

2
¼ �g

XM

m¼1

qm

X%M

%m¼1

ð2 %m � 1Þp
H2

Wm0gm %m

I 00ðð2 %m � 1ÞpR=2HÞ
sin

ð2 %m � 1Þp
2

b %m0: ð3:31Þ

For the asymmetric modes ðn > 0Þ the kinetic energy T
ð1�SÞ
L of the fluid due to sloshing is

T
ð1�SÞ
L ¼

1

2
rLo

2

Z 2p

0

Z H

0

½fðSÞw�r¼R dx R dy

¼
1

2
rLo

2CnR
XK

k¼1

BknJnðeknÞ
XM

m¼1

WmnZmkn; ð3:32Þ

Zmkn ¼
Z H

0

cmðxÞ cosh
eknx

R

	 

dx: ð3:33Þ

For the axisymmetric modes ðn ¼ 0Þ the kinetic energy T
ð1�SÞ
L of the fluid due to sloshing is

T
ð1�SÞ
L ¼

1

2
rLo

2C0R
XM

m¼1

B00tm þ
XK

k¼1

Bk0J0ðek0ÞZmk0

" #
Wm0; ð3:34Þ

tm ¼
Z H

0

cmðxÞ dx: ð3:35Þ

4. Eigenvalue problem for the fluid–structure interaction

The displacement function (2.12) may be written in the matrix form

fu v wgT ¼ ½Ns�f %qg; f %qg ¼ f %u %v %wgT; ð4:1Þ
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where ½Ns� is a matrix of size 3� ðM � MÞ and f %qg is a vector of the generalized co-ordinates of
the shell. Vectors %u; %v; %w consist of the amplitudes in displacement functions.
From Eqs. (2.2, 2.7), the strain energy of the ring stiffened elastic shell becomes

UE ¼ Us þ
XNr

k¼1

Uk ¼
1

2
f %qgT½KE � f %qg

T: ð4:2Þ

The kinetic energy of the elastic shell from Eqs. (2.10), (2.11) expresses in matrix form

TE ¼ Ts þ
XNr

k¼1

Tk ¼
1

2
o2f %qgT½ME � f %qg: ð4:3Þ

In Eqs. (4.2, 4.3), matrix ½KE � and ½ME � are stiffness and mass matrices of elastic shells consisted
of ð3� 3Þ sub-matrices as followings:

½KE � ¼

½K11� ½K12� ½K13�

½K12�T ½K22� ½K23�

½K13�T ½K23�T ½K33�

2
64

3
75 ½ME � ¼

½M11� 0 0

0 ½M22� ½M23�

0 ½M23�T ½M33�

2
64

3
75: ð4:4Þ

As the cylindrical shells without/with ring stiffeners have the homogeneous geometric shape for
the circumferential direction, the one term approximation is valid for the circumferential vibration
mode when analyze the vibration characteristics. Hence the sizes of sub-matrices IKijm;
IMijm ði; j ¼ 1; 2; 3Þ have ðM � MÞ dimensions and given in Appendix A.
The kinetic energy for the fluid defined in Eq. (3.12) can be written by following matrix:

TL ¼
1

2
o2f %w %Bg

½MCL� ½MLS�

0 0

" #
%w

%B

( )
; ð4:5Þ

where ½MCL� is the added mass matrix derived from Eq. (3.18) and ½MLS� is the added mass matrix
from Eq. (3.32) for the asymmetric modes and from Eq. (3.34) for the axisymmetric modes.
For all modes, ½MCL� with ðM � MÞ size are

½MCL� ¼ rLRCn

X%M

%m¼1

2gm %mgj %m

I 0nðð2 %m � 1ÞpR=2HÞH
In

ð2 %m � 1ÞpR

2H

� �
for m; j ¼ 1;y;M: ð4:6Þ

In the case of the asymmetric modes ðn > 0Þ; ½MLS� with ðM � KÞ size are

½MLS� ¼ rLCnRJnðeknÞZmkn for m ¼ 1;y;M and k ¼ 1;y;K : ð4:7Þ

In the case of the axisymmetric modes ðn ¼ 0Þ; ½MLS� is modified by adding a following additional
column to Eq. (4.7) and this matrix has ðM � ðK þ 1ÞÞ size.

½MLS�m0 ¼ rLC0Rtm for k ¼ 0: ð4:8Þ

Apply the Rayleigh–Ritz method of Eq. (4.9) to find the frequency equation to investigate the
vibration characteristics of the considered structures.

@

@ %q
½UE � o2ðTE þ TLÞ� ¼ 0: ð4:9Þ
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From Rayleigh–Ritz procedure, the following equation is obtained

½½KE � 0�
%q

%B

( )
� o2½½ME þ MCL� ½MLS��

%q

%B

( )
¼ 0: ð4:10Þ

From the sloshing equation of Eq. (3.23) or (3.31), the following matrix is obtained:

½½KCS� ½KS��
%q

%B

( )
� o2½0 ½MS��

%q

%B

( )
¼ 0: ð4:11Þ

For the asymmetric mode,

½MS� ¼ dkk cosh
eknH

R

� �
xkn; ð4:12Þ

½KCS� ¼ �g
X%M

%m¼1

ð2 %m � 1Þp
H2

Wmngm %m

I 0nðð2 %m � 1ÞpR=2HÞ
sin

ð2 %m � 1Þp
2

zk %mn; ð4:13Þ

½KS� ¼ gdkk
ekn

R
sinh

eknH

R

� �
xkn ð4:14Þ

for k ¼ 1;y;K and m ¼ 1;y;M: The matrices ½MS�; ½KS� have ðK � KÞ and ½KCS� has ðM � KÞ:
For the axisymmetric mode, ½MS�; ½KS� and ½KCS� are modified by adding the following

additional row to Eqs. (4.12–4.14) and the dimensions K of these matrices must be changed into
K þ 1:

½MS�0k ¼
R2

2g
; ð4:15Þ

½KS�0k ¼ 0; ð4:16Þ

½KCS�0m ¼ �
X%M

%m¼1

ð2 %m � 1Þp
H2

Wm0gm %m

I 00ðð2 %m � 1ÞpR=2HÞ
sin

ð2 %m � 1Þp
2

b %m0 ð4:17Þ

for k ¼ 1;y;K þ 1 and m ¼ 1;y;M:
The frequency equations of the fluid–elastic structure interface are given in Eqs. (4.19) and

(4.11). These two equations can be combined into a single matrix form as

½KE � 0

½KCS� ½KS�

" #
%q

%B

( )
� o2 ½ME þ MCL� ½MLS�

0 ½MS�

" #
%q

%B

( )
¼ 0: ð4:18Þ

The resulting eigenvalue problem can be written in the form

det
½KE � 0

½KCS� ½KS�

" #
� o2 ½ME þ MCL� ½MLS�

0 ½MS�

" #( )
¼ 0: ð4:19Þ

For the empty shell, Eq. (4.18) reduced to following equation:

detf½KE � � o2½ME �g ¼ 0: ð4:20Þ
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Solving this eigenvalue problem the natural frequency and its corresponding mode shape are
obtained.

5. Results and discussions

Some numerical examples are now demonstrated for the present theoretical method. The
comparisons are made with some published data and FEM results to check the validity of the
present theoretical method. ANSYS commercial FEM code [16] is used for the finite element
analysis procedures. In the finite element analysis, the two-dimensional axisymmetric model is
constructed with the axisymmetric structural shell element (SHELL61) for the elastic structures
and fluid element (FLUID81) for the fluid region. SHELL61 has four degrees of freedom at each
node: three translations in the each nodal direction and a rotation. FLUID81 is well suited for
calculating fluid/solid interactions. This element is defined by four nodes having three degrees of
freedom at each node: three translations in the each nodal direction. The fluid boundary
conditions at the bottom of the tank are zero displacement to simulate Eq. (3.4). The radial
displacements of fluid nodes along the wetted shell surfaces coincide with the corresponding
displacements of the shells to present Eq. (3.5). The eigenvalue problem formulated within the
FEM for the vibration analysis is solved by the reduced subspace analysis method included in the
ANSYS code.
In numerical analysis, the following material properties are taken: the shell and stiffeners

considered are made of a steel with: Young’s modulus E ¼ 206 GPa; Poisson’s ratio n ¼ 0:3 and
mass density r ¼ 7850 kg=m3; the liquid is water with mass density rL ¼ 1000 kg=m3:

5.1. Convergence and comparison study

To check the convergence of the present Rayleigh–Ritz method, a CF boundary conditioned
shell with 4 evenly spaced ring stiffeners are analyzed. This shell is partially filled to H=L ¼ 0:5
and the used dimensions are R ¼ 0:2; L ¼ 3R; h ¼ 2 mm; br ¼ h and dr ¼ 5br: Table 1 gives the
bulging natural frequencies for considered vibration modes for this shell. From the frequencies
presented in this table, it may be observed that using the series terms of M ¼ 14 for displacement
function is adequate for converged results. The effect of the series terms K and %M for the velocity
potential functions is very little in the vibration results. In the analysis, the used terms are set to
K ¼ 15; %M=25 adequately. In order to obtain the exact FEM solutions that can be used as the
base line data, convergence studies were conducted for the bulging frequencies of the shell used in
Table 1. The results are given in Table 2. In this table, it may be observed that the using Case 4
(fluid element number ¼ 280; shell element number ¼ 44) in FE analysis is adequate for the
converged results.
To verify the present methodology in the presence of fluid, the published analytical and present

FEA results are compared with the present theoretical results for the unstiffened/stiffened
cylindrical shells partially filled with water in Tables 3 and 4. In Table 3, the analytical solutions
by Kondo [1] and Amabili et al. [4] are compared with the present theoretical results for the
simply supported, unstiffened cylindrical shells partially filled with water. The agreement between
the results is very good and the largest discrepancy is less than 0.1% for sloshing mode, 3.0% for
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bulging mode. The mentioned discrepancy is calculated by ðfr � ftÞ=fr � 100; where ft is the
frequency of present theoretical method and fr is that of reference or FEM. Table 4 is presented to
provide additional comparison with FEM results for the clamped–free, unstiffened/stiffened
cylindrical shells. The considered shell has the same dimensions used in Tables 1 and 2. For the
empty shells, maximum discrepancy is less than 4.0% for the stiffened shell. In sloshing modes of
partially water filled-shell, maximum discrepancy is less than 5.0% and the sloshing frequencies
have the same values regardless of stiffeners. For the bulging modes, maximum discrepancy is less
than 4.2% for the unstiffened shell, 4.5% for the stiffened shell. From these results shown in
Tables 3 and 4, sufficient accuracy of the present theoretical method is noted. This agreement
demonstrates the accuracy of the present methodology.

5.2. Natural frequencies

In order to estimate the effect of the amount of fluid on the natural frequencies of bulging
modes for the fluid-filled cylindrical shell, a normalized natural frequency is defined by fw=fe;
where fe and fw stand for the natural frequencies of the empty and the fluid-filled shell. The results
are given in Figs. 3–8. The shells have a dimensions of R ¼ 0:2 m; L ¼ 3R; h ¼ 2 mm; br ¼ h;
dr ¼ 5br:
The variation of natural frequencies for the unstiffened and stiffened shells with SS boundary

condition shows in Figs. 3–5. Generally, the frequencies in lower circumferential wave number are
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Table 1

Convergence study of theoretical natural bulging frequencies (Hz) for a partially fluid-filled, ring-stiffened cylindrical

shell with CF boundary condition

Mode Number of axial series, M

n m 2 6 10 12 14 16

1 1 638.98 584.07 573.60 571.22 570.05 569.02

2 1666.8 1188.7 1160.34 1154.68 1152.0 1149.9

3 — 1740.5 1658.8 1645.8 1636.6 1634.7

2 1 297.75 286.06 282.00 281.56 281.16 280.81

2 941.46 735.05 720.47 717.03 714.90 713.31

3 — 1461.7 1423.1 1416.4 1410.7 1408.1

3 1 277.03 269.55 258.59 256.96 255.28 254.47

2 594.78 508.49 498.76 496.58 494.83 494.00

3 — 1124.6 1101.6 1097.0 1093.2 1090.9

4 1 444.38 425.56 398.21 392.99 390.05 388.31

2 506.53 465.13 449.75 446.92 441.90 440.89

3 — 919.09 892.70 886.92 883.11 881.41

5 1 592.26 552.82 526.07 519.66 510.44 507.66

2 717.69 607.98 556.12 549.71 545.82 543.17

3 — 954.09 888.12 872.44 864.57 861.88
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Table 2

Convergence study of FEM’s natural bulging frequencies (Hz) for a partially fluid-filled, ring-stiffened cylindrical shell

with CF boundary condition

Mode Number of elements

n m Case 1 Case 2 Case 3 Case 4 Case 5

Fluid ¼ 40 Fluid ¼ 100 Fluid ¼ 180 Fluid ¼ 280 Fluid ¼ 400

Shell ¼ 14 Shell ¼ 24 Shell ¼ 34 Shell ¼ 44 Shell ¼ 54

1 1 560.93 560.62 560.81 560.96 561.07

2 1154.5 1133.8 1130.6 1129.8 1129.5

3 1641.9 1565.8 1546.5 1539.8 1536.7

2 1 275.84 275.84 275.99 276.09 276.15

2 703.25 695.48 694.21 693.82 693.65

3 1428.7 1382.4 1372.4 1369.1 1367.7

3 1 249.36 246.27 245.90 245.89 245.92

2 487.15 482.37 481.75 481.62 481.59

3 1092.2 1063.3 1058.5 1057.1 1056.5

4 1 382.99 374.55 373.42 373.30 373.32

2 432.52 425.13 424.17 424.00 423.98

3 873.68 852.03 848.94 848.19 847.98

5 1 506.57 492.48 490.63 490.36 490.35

2 545.39 530.64 528.67 528.32 528.25

3 861.29 844.89 832.31 831.64 830.55

Table 3

Comparison study of angular frequencies (rad/s) of sloshing and bulging modes for the simply supported cylindrical

shell partially fluid-filled with water (R ¼ 25 m; L ¼ 30 m; H ¼ 21:6 m; h ¼ 0:03 m)

Mode Sloshing mode Bulging mode

Amabili [4] Kondo [1] Present Amabili [4] Kondo [1] Present

n ¼ 0 1 1.2244 1.2238 1.2244 22.244 22.096 22.190

2 1.6591 1.6582 1.6591 44.010 43.762 43.884

3 1.9980 1.9969 1.9979 57.191 56.829 56.960

4 2.2865 2.2853 2.2865 67.291 66.888 66.980

5 2.5422 2.5409 2.5422 75.850 75.347 75.449

n ¼ 4 1 1.4425 — 1.4426 13.658 — 14.054

2 1.9081 — 1.9081 34.441 — 34.672

3 2.2305 — 2.2305 49.692 — 49.629

4 2.5027 — 2.5027 61.877 — 61.556

5 2.7444 — 2.7444 71.804 — 71.476
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much more decreased than those in higher circumferential wave number with the increase of the
fluid-filling ratio (or fluid level) except for some mode of each shell. In the case of the first axial
mode ðm ¼ 1Þ; the frequency variations for the considered shells are very similar except for n > 5
modes. The effect of fluid level in the range of 0:1oH=Lo0:5 is very large for n > 5 mode but for
the stiffened shells with unevenly spacing of S ¼ 2: In this range the effect of fluid level for the
stiffened shells with unevenly spacing of S ¼ 2 is very small for n > 5 modes. The frequency
variations are different from each other axial wave number. The natural frequencies of a fully
fluid-filled cylindrical shell were decreased about 60% corresponding to those of the empty shell.
The normalized frequencies do not linearly vary according to fluid level. The variation of natural
frequencies for the unstiffened and stiffened shell with CF boundary condition shows in Figs. 6–8.
The effect of fluid level for CF boundary conditioned shell is less than that for SS boundary
conditioned shell in small fluid levels. For the m ¼ 1 mode, the effect of fluid level is very small in
small filling ratio ðH=Lo0:4Þ: As shown in figures, the frequency variation with fluid level is very
different among the stiffening methods and the effect of stiffening method is very large. The
general behavior with the filling ratio is similar to SS boundary conditioned shells. It is notable
that there are some fluid-filled regions that normalized frequencies are almost same. This means
that the frequencies in these filling ratios are almost same regardless of fluid level. This does not
mean that the hydrodynamic mass due to fluid motion increases always with increase of fluid
level. Generally, the normalized frequency decreases to the minimum value of a fully fluid-filled
shell due to the increase of hydrodynamic mass induced by the fluid motion during vibration as
the amount of fluid increases. The variation of the normalized frequency for the fluid filled-shell
depends on the axial and circumferential wave number.
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Table 4

Comparison study of natural frequencies (Hz) of sloshing and bulging modes for the partially fluid-filled, unstiffened/

stiffened cylindrical shells with CF boundary condition

Mode Empty shell Water-filled shell

FEM Theory Sloshing Bulging

FEM Theory FEM Theory

(a) Unstiffened shell

1st 183:70ð1; 3Þ 183:95ð1; 3Þ 1:4356ð1; 1Þ 1:5065ð1; 1Þ 169:39ð1; 3Þ 170:34ð1; 3Þ
2nd 204:59ð1; 4Þ 204:73ð1; 4Þ 1:8932ð1; 2Þ 1:9478ð1; 2Þ 189:91ð1; 4Þ 190:91ð1; 4Þ
3rd 299:11ð1; 5Þ 299:25ð1; 5Þ 2:1416ð1; 0Þ 2:1819ð1; 0Þ 265:61ð1; 5Þ 268:82ð1; 5Þ
4th 306:50ð1; 2Þ 307:14ð1; 2Þ 2:2294ð1; 3Þ 2:2847ð1; 3Þ 272:27ð1; 2Þ 274:98ð1; 2Þ
5th 430:08ð1; 6Þ 430:23ð1; 6Þ 2:4555ð2; 1Þ 2:5104ð2; 1Þ 336:80ð1; 6Þ 344:09ð1; 6Þ

(b) Stiffened shell

1st 274:94ð1; 3Þ 280:23ð1; 3Þ 1:4356ð1; 1Þ 1:5065ð1; 1Þ 245:89ð1; 3Þ 255:28ð1; 3Þ
2nd 308:72ð1; 2Þ 312:15ð1; 2Þ 1:8932ð1; 2Þ 1:9478ð1; 2Þ 276:09ð1; 2Þ 281:16ð1; 2Þ
3rd 408:73ð1; 4Þ 419:49ð1; 4Þ 2:1416ð0; 0Þ 2:1819ð0; 0Þ 373:30ð1; 4Þ 390:05ð1; 4Þ
4th 538:47ð1; 5Þ 551:46ð1; 5Þ 2:2294ð1; 3Þ 2:2847ð1; 3Þ 424:00ð2; 4Þ 441:90ð2; 4Þ
5th 626:39ð1; 6Þ 652:40ð1; 6Þ 2:4555ð2; 1Þ 2:5104ð2; 1Þ 481:62ð2; 3Þ 494:83ð2; 3Þ

Numbers in ðm; nÞ of empty and bulging modes represent the axial and circumferential wave number. Numbers in ðk; nÞ
of sloshing modes represent the nodal circle and diameter number of free surface.
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Fig. 9 shows the first three normalized sloshing frequency variations with nodal diameters for
the shell of R ¼ 0:2 m; L ¼ 3R; h ¼ 2 mm: The normalized frequency is defined by fp=ff ; where fp

and ff stand for the natural frequencies of the partially and the fully fluid-filled shell. The sloshing
frequencies of the shells with the same R and L are almost same regardless of boundary conditions
and ring stiffening (see Table 4). We can explain this phenomenon that the deformation of shell
does not occur in the sloshing vibration mode. The shell deformation does not occur because the
shell is stiff enough for sloshing but an extremely flexible shell will show larger displacement. The
sloshing frequencies first increase dramatically as the fluid level increases and then remain almost
constant regardless of any increase of fluid level. The frequency of first mode for n ¼ 1 first
increase up to H=L ¼ 0:4: The frequency of the other mode increase up to H=L ¼ 0:1–0:2: The
effect of fluid level on sloshing frequency becomes small for higher nodal circle vibration mode.
Therefore, it is sufficient to consider fluid level up to 40% of shell length for the sloshing
frequency analysis of fluid in storage tank.
Figs. 10 and 11 give to investigate the effect of number of stiffener on the fundamental

frequency of bulging mode for evenly or unevenly spaced, stiffened shell with CF and SS
boundary conditioned shells of R ¼ 0:4 m; L ¼ 4R; h ¼ 2 mm; br ¼ 2h; dr ¼ 3br: In the figure,
change of fundamental frequency calculated by ðfs � fuÞ=fu � 100; where fu; fs stand for the
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Fig. 3. Effect of fluid level on frequencies of the first axial bulging mode ðm ¼ 1Þ for unstiffened and 4-externally

eccentric ring stiffened shell with SS boundary condition: (a) unstiffened shell; (b) stiffened shell with evenly spacing;

(c) stiffened shell with unevenly spacing of S ¼ 0:5; (d) stiffened shell with unevenly spacing of S ¼ 2:0: ’; n ¼ 1; �;
n ¼ 2; m; n ¼ 3; .; n ¼ 4; ~; n ¼ 5; b; n ¼ 6:
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fundamental frequencies of the unstiffened and stiffened shell. As shown in Fig. 10 for the CF
boundary conditioned shell, the frequencies first increase rapidly and then smoothly for the
stiffened shells with evenly spacing and unevenly spacing of S ¼ 1=1:75 as the number of stiffener
increase. However for the stiffened shell with unevenly spacing of S ¼ 1=1:75 which are partially
filled to H=L ¼ 0:25 by fluid and the empty shell, the frequencies decrease with increasing the
stiffener number in the case of stiffening by a large number of stiffener. The reason of frequency
decreasing is that the stiffness effect is smaller than mass effect by increase of ring stiffener
number. For the stiffened shell with unevenly spacing of S ¼ 1:75; the frequencies first increase
smoothly and then remain constant with the increase of ring stiffener number. The behavior of
frequency variation for the empty shell and the fluid-filled shell up to H=L ¼ 0:25 is almost same.
The frequency increment by ring stiffening is the largest for the stiffened shell with evenly spacing,
the smallest for the stiffened shell with unevenly spacing of S ¼ 1:75: The maximum increment is
about 85% for the stiffened shell with evenly spacing, 80% for the stiffened shell with unevenly
spacing with S ¼ 1=1:75 and 22% for the stiffened shell with unevenly spacing of S ¼ 1:75: The
effect of stiffener is the largest for the unevenly spaced shell of S ¼ 1=1:75 in the case of stiffening
by small number of stiffener. The effect of stiffener for the partially fluid-filled shell decreases with
increase of fluid amount. For the SS boundary conditioned shell, the frequency variation with
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Fig. 4. Effect of fluid level on frequencies of the second axial bulging mode ðm ¼ 2Þ for unstiffened and four-externally
eccentric ring stiffened shell with SS boundary condition: (a) unstiffened shell; (b) stiffened shell with evenly spacing;

(c) stiffened shell with unevenly spacing of S ¼ 0:5; (d) stiffened shell with unevenly spacing of S ¼ 2:0: ’; n ¼ 1; �;
n ¼ 2; m; n ¼ 3; .; n ¼ 4; ~; n ¼ 5; b; n ¼ 6:
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stiffener number is shown in Fig. 11. Unlike the CF boundary conditioned shell, there is the
frequency gap between the empty and small amount fluid-filled shell. This reason can be explained
that the effect of filling ratio is greater than for the CF boundary conditioned shell in small fluid
level as indicated in Fig. 3. For two types of the unevenly spaced shells, frequency variation is
almost same. By ring stiffening, the frequency increases up to 75% for the stiffened shell with
evenly spacing and 60% for the shell of unevenly spacing. The general behavior is similar to CF
boundary conditioned shell.
From two figures, the stiffening method by evenly spacing or unevenly spacing of So1 for the

CF boundary conditioned shell is more influenced on the fundamental frequency than by
unevenly spacing of S > 1: This means that it is more effective to locate the ring at free edge for the
CF boundary conditioned shell when the shell is stiffened unevenly by ring stiffeners to increase
the fundamental frequency. But for the SS boundary conditioned shell, the evenly spacing of ring
stiffeners is more effective than unevenly spacing. The effect of stiffener for the CF boundary
conditioned shell is greater than for the SS boundary conditioned shell.
Figs. 12 and 13 show the fundamental frequency variation with spacing ratio or stiffener

position. Fig. 12 indicates the frequency variation with stiffener position for the one-ring stiffened
shell. The dimensions of shell used in Fig. 12 are R ¼ 0:4 m; L ¼ 2R; h ¼ 2 mm; br ¼ 5h and
dr ¼ 2br: For the CF boundary conditioned shell the fundamental frequencies increase as the
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Fig. 5. Effect of fluid level on frequencies of the third axial bulging mode ðm ¼ 3Þ for unstiffened and four-externally

eccentric ring stiffened shell with SS boundary condition: (a) unstiffened shell; (b) stiffened shell with evenly spacing;

(c) stiffened shell with unevenly spacing of S ¼ 0:5; (d) stiffened shell with unevenly spacing of S ¼ 2:0: ’; n ¼ 1; �;
n ¼ 2; m; n ¼ 3; .; n ¼ 4; ~; n ¼ 5; b; n ¼ 6:
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stiffener position is near to free edge. But the frequencies decrease in case that stiffener is
positioned to free edge exactly. It is more efficient stiffening method that the stiffener is located
near to free edge ð0:9ox=Lo1Þ to increase the fundamental frequency for the shells with CF
boundary condition. By stiffening the shell with only one stiffener, the frequencies increase to
90–120% according to fluid level compared with the unstiffened shell. For the SS boundary
conditioned shell, as the stiffener is located near to the center of shell the frequencies increase. The
optimal position is x=L ¼ 0:4 for the partially fluid-filled shell up to H=L ¼ 0:25 , 0.5 and x=L ¼
0:5 for the other shells to have maximum frequency. By stiffening the shell with only one stiffener,
the frequencies increase to 80–150% according to fluid level compared with the unstiffened shell.
Fig. 13 shows the frequency variation with stiffener position for the five-ring stiffened shell. The
shells have a dimension of R ¼ 0:4 m; L ¼ 2R and the ring stiffeners have br ¼ 2h; dr ¼ 4br: In the
case of the CF boundary conditioned shell, the frequency is larger for the stiffened shells with
unevenly spacing of So1 but smaller for the stiffened shells with unevenly spacing of S > 1 than
that of the stiffened shells with evenly spacing. The frequencies increase gradually and then
decrease as the spacing ratio become small, that is, stiffeners is positioned from the near clamped
edge to the near free edge. In the case of SS boundary conditioned shell, the frequencies gradually
decrease as the stiffener spacing ratio ðSÞ becomes small or large. This means that the frequencies
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Fig. 6. Effect of fluid level on frequencies of the first axial bulging mode ðm ¼ 1Þ for unstiffened and four-externally

eccentric ring stiffened shell with CF boundary condition: (a) unstiffened shell; (b) stiffened shell with evenly spacing;

(c) stiffened shell with unevenly spacing of S ¼ 0:5; (d) stiffened shell with unevenly spacing of S ¼ 2:0: ’; n ¼ 1; �;
n ¼ 2; m; n ¼ 3; .; n ¼ 4; ~; n ¼ 5; b; n ¼ 6:
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decrease as the stiffeners are positioned to a boundary edge of shell. The frequencies for the
partially fluid-filled shell are the smallest in case that the stiffeners locate to empty region, i.e.,
S ¼ 0:5: The stiffened shells with unevenly spacing of S ¼ 1:25 have the largest frequencies. The
results show that the frequency may be significantly influenced by the stiffener position. Designers
may obtain the desirable frequency suitable to design purpose as the stiffeners are arranged
appropriately. From Figs. 12 and 13, the effect of fluid level on the fundamental frequency of SS
boundary conditioned shell is larger than that of CF shell.

5.3. Vibration mode shapes

To see the variation of the axial vibration mode shape with fluid level, stiffener position and
circumferential wave number, axial vibration mode shapes are plotted in Figs. 14–17.
To show the effect of the fluid level and stiffener position on the axial mode shapes, variations

of mode shape for n ¼ 5 are plotted in Fig. 14 for the one-ring stiffened shell with CF boundary
condition. The effect of stiffener position is very great on mode shapes. As shown in the figures,
the stiffener restrains the deformation of shell. The effect of fluid level on the first mode is large
for stiffened shell at x=L ¼ 0:75 and very small for the unstiffened shell and stiffened shells at
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Fig. 7. Effect of fluid level on frequencies of the second axial bulging mode ðm ¼ 2Þ for unstiffened and four-externally
eccentric ring stiffened shell with CF boundary condition: (a) unstiffened shell; (b) stiffened shell with evenly spacing;

(c) stiffened shell with unevenly spacing of S ¼ 0:5; (d) stiffened shell with unevenly spacing of S ¼ 2:0: ’; n ¼ 1; �;
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x=L ¼ 0:25; 0.5. The fluid effect on the other modes is some large. As shown in the figures, the
adding fluid changes the nodal points. For the partially fluid-filled shells up to H=L ¼ 0:25–0:75
of stiffened shells at x=L ¼ 0:75; the first and second mode shapes are very different to other shell.
It looks like that these two mode shapes are exchanged with each other by fluid as compared to
other shells.
For the one-ring stiffened shell with SS boundary condition, variations of mode shape for n ¼ 7

are plotted in Fig. 15. For the unstiffened and empty shell, the mode shapes are symmetric (or
antisymmetric) to center on shell but they are changed to un-symmetric by adding the fluid or the
stiffener. The mode shapes of fully fluid-filled shell are similar to those of empty shell. The mode
shapes of stiffened shells are very different to unstiffened shell by the effect of ring stiffener. The
deformation of ring stiffening region is very small, because the dimensions of stiffener (the
stiffness of stiffener) is large. Considering the small stiffener, the deformation may depend on shell
modes. The second and third axial mode shapes of ring stiffened shells at x=L ¼ 0:25 and 0.75 are
influenced by fluid level but the first mode shapes are not. The effect of fluid is great for the
stiffened shell with a ring at x=L ¼ 0:5: For the empty and fully fluid-filled shells with a ring
stiffener at x=L ¼ 0:5 the first and second mode shapes are exchanged compared to those of
unstiffened shell. For the partially fluid-filled shell the first and second mode shapes have reversed
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Fig. 8. Effect of fluid level on frequencies of the third axial bulging mode ðm ¼ 3Þ for unstiffened and four-externally
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shapes. The effect of stiffener on mode shapes is greater than that of fluid. The effect of fluid on
mode shapes depends on stiffener position.
Fig. 16 indicates the variations of first three axial mode shapes for n ¼ 5 of the five-ring

stiffened shells with CF boundary condition used in Fig. 13. The mode shapes of the stiffened
shells with evenly spaced rings are similar to unstiffened shell except for the partially fluid-filled
shell up to H=L ¼ 0:5 and 0.75. There is only local deformation by stiffeners for these shells. The
mode shapes of the partially fluid-filled shell up to H=L ¼ 0:5 and 0.75 are very different to other
mode shapes due to fluid. The effect of fluid is very small for the partially fluid-filled shell up to
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H=L ¼ 0:25 but very large for the partially fluid-filled shell up to H=L ¼ 0:5 and 0.75. The effect
of ring stiffener is very great for the stiffened shell with unevenly spacing, S ¼ 0:5: There is no
deformation at free edge for the first mode shapes by stiffeners. The mode shapes of stiffened
shells with unevenly spacing, S ¼ 2; are similar to those of unstiffened shells. This behavior results
from that the stiffeners positioned mainly near to clamped edge.
Fig. 17 is for the SS boundary conditioned shells. The behavior of mode shapes of stiffened

shells with evenly spacing is similar to unstiffened shell except for local modes by stiffeners. The
effect of fluid for stiffened shells is larger than that of unstiffened shell. The effect of fluid is largest
for the partially fluid-filled shells up to H=L ¼ 0:5: The stiffener position makes the mode shapes
different.

6. Conclusion

The theoretical method has been proposed to investigate the coupled vibration characteristics
of the partially fluid-filled and ring-stiffened cylindrical shells with clamped–free or simply
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supported boundary condition using Rayleigh–Ritz procedure. The present theoretical results are
verified by comparing the present finite element analysis results from ANSYS. Based on the some
numerical results, the followings are concluded.
The frequencies of bulging and sloshing mode are influenced by fluid level, that is, the frequency

of bulging decreases and that of sloshing mode increases as the fluid level increases. The effect of
fluid level varies with the wave number, i.e., this effect becomes large for the high wave number on
bulging mode and small for the high nodal circle number on sloshing mode. The sloshing
frequencies of the partially fluid-filled shells with the same dimension are almost same regardless
of boundary conditions and ring stiffening. Few stiffeners are adequate for the stiffening of the
cylindrical shell, and many stiffeners may decrease the frequency on the contrary. The proper
arrangement of ring stiffeners may result in the desirable effect of raising the frequency. Therefore
optimum (or best) design should be conducted for more efficient usages of stiffeners in the
stiffened shell design. The mode shapes vary as stiffener positions and fluid level change. The
effect of fluid on mode shapes depends on stiffener position. The effect of stiffener on mode
shapes is greater than that of fluid.
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Appendix A

The sub-matrices, IKijm and IMijm in Equation (4.4) are as follows:

½K11�m %m ¼ RAs
X 22

%mmCn

a %mam

þ
ð1� nÞn2

2R2

X 11
%mmSn

a %mam

� �
; ðA:1Þ

½K12�m %m ¼ nAs

nX 02
%mmCn

a %m

�
1� n
2

X 11
%mmSn

a %m

� �
; ðA:2Þ
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½Kc13�m %m ¼ nnAs
X 02

%mmCn

a %m

; ðA:3Þ
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½M11�m %m ¼ rhRCn
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X
pq
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ðSr Ir I 0rÞ ¼
Z drþh=2

h=2
ðz z2 z3Þ dz; ðA:13Þ

Sn ¼
Z 2p

0

sin2 ny dy: ðA:14Þ
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